Thesis supervised by Jörg Osterrieder

Jump to: 2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2009 | 2007 | 2006 | 2005

2023

Modelling taxpayers’ behaviour based on prediction of trust using sentiment analysis (2023)Finance Research Letters, 58(Part C). Article 104549. Coita, I. F., Belbe, S. (., Mare, C. (., Osterrieder, J. & Hopp, C.https://doi.org/10.1016/j.frl.2023.104549Examining share repurchase executions: insights and synthesis from the existing literature (2023)Frontiers in Applied Mathematics and Statistics, 9. Article 1265254. Osterrieder, J. & Seigne, M.https://doi.org/10.3389/fams.2023.1265254Share buybacks: A theoretical exploration of genetic algorithms and mathematical optionality (2023)Frontiers in Artificial Intelligence, 6. Article 1276804. Osterrieder, J.https://doi.org/10.3389/frai.2023.1276804Navigating the Environmental, Social, and Governance (ESG) landscape: constructing a robust and reliable scoring engine - insights into Data Source Selection, Indicator Determination, Weighting and Aggregation Techniques, and Validation Processes for Comprehensive ESG Scoring Systems (2023)Open Research Europe, 3. Article 119 (E-pub ahead of print/First online). Liu, Y., Osterrieder, J., Hadji Misheva, B., Koenigstein, N. & Baals, L.https://doi.org/10.12688/openreseurope.16278.1The Great Deception: A Comprehensive Study of Execution Strategies in Corporate Share Buy-Backs (2023)[Working paper › Preprint]. Seigne, M. & Osterrieder, J.Preface (2023)In Enterprise Applications, Markets and Services in the Finance Industry: 11th International Workshop, FinanceCom 2022, Twente, The Netherlands, August 23–24, 2022, Revised Selected Papers (pp. vii-viii) (Lecture notes in business information processing; Vol. 467). van Hillegersberg, J., Osterrieder, J., Rabhi, F., Abhishta, A., Marisetty, V. & Huang, X.https://doi.org/10.1007/978-3-031-31671-5Digital Finance: Reaching New Frontiers (2023)Open Research Europe, 3. Article 38. Osterrieder, J., Hadji Misheva, B. & Machado, M.https://doi.org/10.12688/openreseurope.15386.1

2022

Feature Selection via the Intervened Interpolative Decomposition and its Application in Diversifying Quantitative Strategies (2022)[Working paper › Preprint]. ArXiv.org. Lu, J. & Osterrieder, J.Editorial: Artificial intelligence in finance and industry: Highlights from 6 European COST conferences (2022)Frontiers in Artificial Intelligence, 5. Article 1007074. Henrici, A. & Osterrieder, J.https://doi.org/10.3389/frai.2022.1007074Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples (2022)Digital Finance, 4(2-3), 137-138. Osterrieder, J.https://doi.org/10.1007/s42521-022-00063-9Simulating financial time series using attention (2022)[Working paper › Preprint]. Fu, W., Hirsa, A. & Osterrieder, J.Applications of Reinforcement Learning in Finance -- Trading with a Double Deep Q-Network (2022)[Working paper › Preprint]. Zejnullahu, F., Moser, M. & Osterrieder, J.https://doi.org/10.48550/arXiv.2206.14267High-Frequency Causality in the VIX Index and its derivatives: Empirical Evidence (2022)[Working paper › Preprint]. Farokhnia, K. & Osterrieder, J.AI for trading strategies (2022)[Working paper › Preprint]. Jevtic, D., Deleze, R. & Osterrieder, J.The Efficient Market Hypothesis for Bitcoin in the context of neural networks (2022)[Working paper › Preprint]. Kraehenbuehl, M. & Osterrieder, J.Enterprise Applications, Markets and Services in the Finance Industry: 11th International Workshop, FinanceCom 2022, Twente, The Netherlands, August 23–24, 2022, Revised Selected Papers (2022)[Book/Report › Book editing] 11th International Workshop on Enterprise Applications, Markets and Services in the Finance Industry, FinanceCom 2022. Springer. van Hillegersberg, J., Osterrieder, J., Rabhi, F., Abhishta, A., Marisetty, V. & Huang, X.https://doi.org/10.1007/978-3-031-31671-5

2021

Wasserstein GAN: Deep Generation applied on Bitcoins financial time series (2021)[Working paper › Preprint]. Samuel, R., Nico, B. D., Moritz, P. & Joerg, O.Deep reinforcement learning on a multi-asset environment for trading (2021)[Working paper › Preprint]. Hirsa, A., Osterrieder, J., Hadji-Misheva, B. & Posth, J.-A.Generative Adversarial Networks in finance: an overview (2021)[Working paper › Preprint]. Eckerli, F. & Osterrieder, J.The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets (2021)Frontiers in Artificial Intelligence, 4. Article 668465. Posth, J.-A., Kotlarz, P. K., Hadji-Misheva, B., Osterrieder, J. & Schwendner, P.https://doi.org/10.3389/frai.2021.668465Explainable AI in Credit Risk Management (2021)[Working paper › Working paper]. ArXiv.org. Osterrieder, J., Misheva, B. H., Hirsa, A., Kulkarni, O. & Lin, S. F.https://doi.org/10.48550/arXiv.2103.00949The VIX index under scrutiny of machine learning techniques and neural networks (2021)[Working paper › Working paper]. ArXiv.org. Hirsa, A., Osterrieder, J., Misheva, B. H., Cao, W., Fu, Y., Sun, H. & Wong, K. W.https://doi.org/10.48550/arXiv.2102.02119Audience-Dependent Explanations for AI-Based Risk Management Tools: A Survey (2021)Frontiers in Artificial Intelligence, 4. Article 794996. Hadji Misheva, B., Jaggi, D., Posth, J.-A., Gramespacher, T. & Osterrieder, J.https://doi.org/10.3389/frai.2021.794996

2018

Pattern Learning Via Artificial Neural Networks for Financial Market Predictions (2018)SSRN ELibrary. Article 3243479. Gabler, A., Perez, D., Sutter, U., Kucharczyk, D., Osterrieder, J. & Reitenbach, M.Pricing, Loss and Sensitivity Analysis of Barrier Options via Regression (2018)SSRN ELibrary. Article 3194111. Gabler, A., Wiegand, M. & Osterrieder, J.

2017

GARCH Modelling of Cryptocurrencies (2017)Journal of Risk and Financial Management, 10(4). Article 17. Chu, J., Chan, S., Nadarajah, S. & Osterrieder, J.https://doi.org/10.3390/jrfm10040017A Dynamic Market Microstructure Model with Market Orders and Random Order Book Depth (2017)[Working paper › Working paper]. Osterrieder, J.https://doi.org/10.2139/ssrn.2984315A Statistical Analysis of Cryptocurrencies (2017)Journal of Risk and Financial Management, 10(2). Article 12. Chan, S., Chu, J., Nadarajah, S. & Osterrieder, J.https://doi.org/10.3390/jrfm10020012A statistical risk assessment of bitcoin and its extreme tail behavior (2017)Annals of Financial Economics, 12(01). Article 1750003. Osterrieder, J. & Lorenz, J.https://doi.org/10.1142/s2010495217500038A Statistical Analysis of Carry Trading (2017)SSRN ELibrary. Fritzmann, S., Jaggi, D. & Osterrieder, J.https://doi.org/10.2139/ssrn.2993902Bitcoin and Cryptocurrencies—Not for the Faint-Hearted (2017)International Finance and Banking, 4(1), 56-94. Osterrieder, J., Strika, M. & Lorenz, J.https://doi.org/10.5296/ifb.v4i1.10451GARCH Modeling of Cryptocurrencies (2017)[Working paper › Working paper]. Chu, J., Chan, S., Nadarajah, S. & Osterrieder, J.https://doi.org/10.2139/ssrn.3047027Momentum and trend following trading strategies for currencies revisited-combining academia and industry (2017)SSRN ELibrary. Article 2949379. Rohrbach, J., Suremann, S. & Osterrieder, J.https://doi.org/10.2139/ssrn.2949379The Statistics of Bitcoin and Cryptocurrencies (2017)In Proceedings of the 2017 International Conference on Economics, Finance and Statistics (ICEFS 2017) (Advances in Economics, Business and Management Research; Vol. 26). Osterrieder, J.https://doi.org/10.2991/icefs-17.2017.33